
extra

SOFTWARE-DEFINED VEHICLE
Implemented Better With Rust
as Programming Language

Classic programming languages are reaching their limits due to in

creasing complexity, fast development cycles and growing quality

requirements. Rust has the potential to become the language of

choice for stateoftheart software development. ITK Engineering

des cribes how builtin functions for software quality enable secure

coding and minimize the effort for debugging and testing.

g Digital features play a pivotal role
across all industries. Apps and digital
solutions are firmly entrenched in con-
sumers’ lives. Going forward, people
are going to expect greater connectivity,
automation, and customization. These

expectations will be met with software
(SW) solutions which will have major
implications for the customer experience
and the specifications for the underlying
hardware. The proliferation of SW-
defined elements is driving demand

© Shutterstock | whiteMocca

WRIT TEN BY

Christopher Schwager
is Realtime Architectures Senior

Expert at ITK Engineering GmbH
in Rülzheim (Germany).

Software-defined Vehicle

Rust Integration Based on
Interoperability in Legacy Software

2

DEVELOPMENT SofTWAREdEfINEd VEHIClE

for continuous improvement in SW
development. Data will have to be
exchanged constantly with the cloud to
continuously optimize SW within the
confines of the given hardware con-
straints. Vendors must accelerate their
development cycles to continue differen-
tiating products with new features and
upgrades throughout their lifecycles.

SW is thus sure to grow even more
complex. It will take more time to vali-
date SW via extensive testing and de-
bugging to prevent and redress flaws –
especially as aspects such as functional
safety figure ever more prominently in
the equation. Part of the problem is that
the classic C and C++ programming
languages used to develop embedded
SW lack basic safety guarantees, for
instance, for memory and thread safety.
These deficiencies are among the main
causes of SW crashes. Many tools and
methods have been developed to ensure
quality through extensive validation.
In a SW-defined world, the increasing
costs associated with this approach
will no longer be acceptable [1]. New
solutions are needed to ensure effi-
ciency and quality during program-
ming. One could be a programming
 language such as Rust.

RUST AS MODERN
PROGRAMMING LANGUAGE

Rust [2] has been gaining traction in
many industries in recent years. Leading
tech companies such as Google [3] and
Amazon [4] have adopted this new lan-
guage. This multi-paradigm program-
ming language was designed to enable
functional safety as well as security, par-
allel programming, and ease of learning,
while serving performance-critical appli-
cations well. Rust’s innovative memory
management sets new standards, espe-
cially when it comes to functional safety.
The concept of variable ownership guar-
antees memory safety at compile time.
There is no need to apply other princi-
ples such as garbage collection at run-
time. This significantly improves SW
performance. Every variable and every
value have an owner. Variables must be
borrowed when other functions seek to
manipulate the value. This goes to en-
sure that the value cannot be simultane-
ously changed by anyone else. The value
is dropped when the owner goes out of
scope. And the strict type system rules

out implicit conversions between vari-
ables. Another aspect is the use of cod-
ing guidelines such as MISRA. A com-
parison has shown that Rust renders
80 % of the MISRA guidelines irrele-
vant. This results in greater efficiency
and lower costs. What’s more, Rust can
match or exceed established languages
in terms of performance, efficiency, and
control [5]. Simple yet comprehensive
and consistent, the toolchain treats
developers to a unique experience. The
bottom line: Because of its good perfor-
mance and functional safety as well as
security aspects, Rust lends itself to any
kind of app – anything goes, from real-
time embedded apps to web apps. It
does indeed have the potential to replace
established programming languages.

THE CHALLENGES OF INTEGRATING

Switching languages entirely is seldom a
viable option. The obstacle is the legacy
SW, which took a lot of effort to set up
and then evolve over the years. In most
cases, there is little point in redoing all
this in another programming language.
It would take far too much time and the
costs would be prohibitive. On top of
that, special tools were used to qualify
and validate the SW. Another aspect
relates to established SW platforms
and technology stacks, which include
operating systems such as Linux and
QNX, as well as frameworks such as
the Robot Operating System (ROS) and
AUTOSAR. All these solutions have one
thing in common: They were developed
in C or C++ and provide application
programming interfaces (APIs) in these
programming languages. In order to
take advantage of Rust, there has to be
a migration path or a way to bridge the
gap between the two worlds. The term
for the latter is interoperability. This is
not just about basic compatibility. It is
also about the way SW components inte-
grate with one another and how inter-
faces are implemented.

FOREIGN FUNCTION INTERFACE AS
GATEWAY TO INTEROPERABILITY

The foreign function interface (FFI) is a
mechanism that enables SW to use func-
tions or services written in another pro-
gramming language. It serves as a link
between the calling conventions and
semantics of the two programming

 languages. The application binary inter-
face (ABI) plays a role at the machine
code level by defining conventions such
as memory layout and bit and byte
encoding at that level. Ultimately, the
two levels have to dovetail, FIGURE 1.
Rust provides an FFI that allows func-
tion calls to and from C, FIGURE 2. This
interface can also serve to interact with
other programming languages such as
C++. There are two main use cases –
integrating C into Rust and vice versa.
What they have in common is that the
FFI has to be defined in Rust [6].

Integrating C into Rust starts with the
C-API of the code to be integrated. The
interface, both data types and function
signatures, must be rendered in an ext-
ernal block in Rust. Rust assumes that
external functions are unsafe, so calls
must be packed into an unsafe block.
This is why implementing an additional
safe interface around the raw C interface
is a good idea. This interface restores the
lost guarantees. The compiler cannot
verify that the declarations are correct.
When integrating Rust into C, individual
public functions can be prepared for use
in C with the keyword extern “C” and
the attribute #[no_mangle]. Compatible C
headers must also be created. If the data
types are compatible, there are no other
special demands to bear in mind.

DATA TYPE INTEROPERABILITY

Scalar data types such as integers –
for example, the 32-bit unsigned inte-
ger type u32 – and float/double floating
point numbers are binary-compatible
between Rust and C. The reason why
floating point numbers are compatible is
because both languages use an IEEE-754
standard-compliant representation. How-
ever, there are differences in Boolean
and character data types. In C, zero rep-
resents false and any non-zero number
means true. The latterly introduced C99
standard established an explicit data
type (bool/_Bool) and corresponding
values for true = 1 and false = 0. This
is also the definition in Rust [7]. How-
ever, many C libraries use their own
type definition based on an integer and
corresponding macros. The data type
length and Boolean values definitions
may differ, so this can trigger undefined
behavior at the interface.

The difference is even greater when
it comes to character representation.

Software-defined Vehicle

3

Rust represents characters (char) as four-
byte Unicode scalar values. In C, a char-
acter, typically an ASCII character, of the
basic character set is encoded as an inte-
ger in one byte. This means that full
interoperability based on the C char is

not possible because only the basic char-
acter set is interchangeable between the
two. Type conversions have to be done
on the Rust side and invalid characters
have to be filtered and processed accord-
ingly on the C side.

Composite data types also present
some obstacles. Take, for example,
arrays: The length of the array plays
a special metadata role in Rust along-
side the actual data elements. This
allows Rust to determine if the access
is within the array boundaries. In C, an
array name is a pointer to the first ele-
ment of the array. An equivalent to the
check performed in Rust is possible only
in rare, exceptional cases. If the length
is dynamic, it has to be specified as an
additional argument alongside the start
address. This means that in Rust, only a
slice can be created when reconstruct-
ing from a C pointer and its length. Un-
like an array, a slice has the great draw-
back that the length is not fixed at com-
pile time. Therefore, a check for out-
of-bounds access can only take place at
runtime. An unsafe block has to be used
to create the slice [9], which can result
in undefined behavior.

As a rule, raw pointers are ABI compli-
ant. Note that the Rust compiler cannot
provide any guarantees, for example, as
to memory safety. Thus, the use of raw
pointers requires an unsafe block. One
could instead use options and/or refer-
ences, but that would mean that the
caller is responsible for the quality of
the data. User-defined data types such
as structures harbor fewer potential
sources of error. They can be converted
to a C representation using the attribute
#[repr(C)]. This resolves issues such as
bit/byte padding, data alignment, and
packing. FIGURE 3 summarizes data
type interoperabilities.

FFI DEFINITION

Writing a compatible interface between
Rust and C manually would appear to be

FIGURE 2 Various use cases for interoperability
with C (© ITK Engineering)

FIGURE 1 Interoperability at the FFI and ABI levels (© ITK Engineering)

DEVELOPMENT SofTWAREdEfINEd VEHIClE

4

an onerous chore. However, the techni-
cal implementation is straightforward.
There are FFI generators available such
as bindgen [10] and cbindgen that can
automatically generate the required Rust
and C files. Experiencewise, this is com-
mon practice and a good option, unless
this involves a complex interface with
many dependencies. If C code is called
from Rust, a safe wrapper can then be
added manually. It should have proper-
ties that ensure the call is safe for all
inputs and outputs despite the unsafe
call to the C interface – including type
conversion and has to take into account

lifetimes and ownership, which includes,
for example, a mechanism to release
memory once it has been transferred
fully from C to Rust – even in the event
of a panic error.

In the opposite direction – that is,
when calling Rust from C – the exter-
nal Rust interface has to be defined
 manually. The goal here is to do with-
out unsafe blocks while still defining a
fault-tolerant interface: use Option<&T>
or Option<Box<T>> rather than raw
pointers to make it null pointer-toler-
ant and take into account lifetimes
and ownership.

CONCLUSION

The software-defined world calls for
new approaches that can cope with ris-
ing costs and growing complexity while
ensuring efficiency and quality early on,
during programming. Rust, as a safe and
secure programming language, has this
potential. However, switching languages
altogether is rarely possible or practical.
This is why programmers need ways
to combine Rust with mainstream lan-
guages such as C. The compatible ABI is
essential, but there are some issues to
overcome regarding FFI definition. If
these are resolved, the two languages
will indeed be interoperable.

REFERENCES:
[1] Roland Berger (ed.): Computer on wheels
Part 4, (July 2022). online: https://content.roland
berger.com/hubfs/07_presse/Roland_Berger_Arti
cle_Computer_on_wheels_4_2022.pdf, access:
March 21, 2024
[2] Rust Team (ed.): Rust. A language empowering
everyone to build reliable and efficient SW. online:
https://www.rustlang.org/, access: January
26, 2024
[3] Miller, S.; lerche, C.: Sustainability with
Rust. In: AWS (ed.): AWS open Source Blog.
online: https://aws.amazon.com/de/blogs/open
source/sustainabilitywithrust/, access: January
26, 2024
[4] Vander Stoep, J.; Hines, S.: Rust in the Android
platform. online: https://security.googleblog.
com/2021/04/rustinandroidplatform.html,
access: January 26, 2024
[5] Ng, V.: Rust vs C++, a Battle of Speed and
Efficiency. In: Journal of Mathematical Techniques
and Computational Mathematics 2 (2023), No. 6,
pp. 216 220
[6] Rust Community (ed.): The Rustonomicon. for
eign function Interface. online: https://doc.rust
lang.org/nomicon/ffi.html, access: January 26, 2024
[7] Beingessner, A: Notes on Type layouts and
ABIs in Rust. online: https://faultlore.com/blah/rust
layoutsandabis/#thelayoutsabisofbuiltins,
access: January 26, 2024
[8] Rust Community (ed.): The Rust Reference.
online: https://doc.rustlang.org/reference/types/
textual.html, access: January 26, 2024
[9] Rust Community (ed.): The Rust Standard
library. online: https://doc.rustlang.org/std/slice/
fn.from_raw_parts.html, access: January 26, 2024
[10] Rust Community (ed.): RustBindgen. online:
https://github.com/rustlang/rustbindgen, access:
January 26, 2024

FIGURE 3 Various data types are interoperable between
the C and Rust programming languages (© ITK Engineering)

5

IMPRINT
Special Edition 2024 in cooperation with ITK Engineering GmbH,
Bergfeldstraße 2, 83607 Holzkirchen; Springer Fachmedien Wiesbaden
GmbH, Postfach 1546, 65173 Wiesbaden,
Amtsgericht Wiesbaden, HRB 9754, USt-ldNr. DE81148419

MANAGING DIRECTORS:
Stefanie Burgmaier | Andreas Funk | Joachim Krieger

PROJECT MANAGEMENT: Anja Trabusch

COVER PHOTO: © Shutterstock | whiteMocca

ITK Engineering GmbH
Headquarters: Ruelzheim
Im Speyerer Tal 6
76761 Ruelzheim, Germany
T: + 49 (0)7272 7703-0
F: + 49 (0)7272 7703-100
info@itk-engineering.com

www.itk-engineering.com
www.itk-career.com

Founded in 1994
Branch offices throughout
Germany – ITK companies
worldwide.

Follow us on:

ITK Engineering
Stability, reliability and methodological expertise – this is what we have

stood for since our founding in 1994. At all times, our customers have

benefitted from our dedicated multi-industry know-how, especially in the

fields of control systems design and model-based design. Customers can

count on us – from conception through to deployment, we cover the entire

development process.

Our areas of expertise include:

 Software development

 Hardware development

 Electrical & electronic systems

 System integration

 Software as a product

 Turnkey systems

 Customer specific development

 Technical consulting

 Seminars

 Quality assurance

The satisfaction of each of our partners and mutually respectful cooperation

shape our corporate philosophy, in which four values are firmly anchored:

Read more about this on the web.

V.
1.
0.
0_
e_
20
21

02_21_ATZ_Sonderdruck_eng_RZ.indd 102_21_ATZ_Sonderdruck_eng_RZ.indd 1 07.04.2021 15:38:1407.04.2021 15:38:14

https://www.itk-engineering.de/en/
https://www.itk-engineering.de/en/career/
https://www.facebook.com/itkengineering
https://www.linkedin.com/company/itk-engineering/
https://www.youtube.com/channel/UChdFA7NS5L8jiacKK0HL5nA
https://www.xing.com/pages/itkengineering
https://www.kununu.com/de/itk-engineering

